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Using a Full Potential Solver for Propulsion System
Exhaust Simulation

Robin G. Melvin,* Forrester T. Johnson,! David P. Young,t David W. Foutch,§ John E. Bussoletti,H
and Michael B. Bieterman**

The Boeing Company, Seattle, Washington 98124

The need for accurate simulations of engine installations on modern commercial transport aircraft has led
to consideration of several formulations capable of modeling engine exhausts. Since such exhausts often interact
with wings, struts, and nacelles, a complex geometry computational fluid dynamics (CFD) capability is desirable.
Engine exhausts often contain nonlinear effects such as weak shock waves. There are very few CFD codes that
can model these effects for complex geometries in a timely way. However, a full potential formulation has been
implemented in the general geometry code TRANAIR. This model incorporates certain assumptions, the main
one being that the flowfield can be divided into a finite number of regions in each of which the total pressure
and total temperature are constant. The purposes of this article are to state the theoretical assumptions made
by the full potential and Euler models and to validate the methods on an axisymmetric test case. In the situations
considered (typical of modern turbofan engines) the full potential and Euler results agree very well.

Nomenclature
c = speed of sound
E = energy flux vector
G = swirl
H = enthalpy
M — Mach number
M = momentum flux tensor
PT-> PS = total pressure, static pressure
p = pressure
q = velocity magnitude
01 = difference of specific heats
rp = ratio of local total pressure to total pressure at

infinity
rT = ratio of local total temperature to total

temperature at infinity
5 = entropy
T = temperature
V = velocity
W = mass flux
a = average quantity
y = ratio of specific heats
A = jump in quantity
/A = doublet parameter
Vi9 V2 — upwinding switches
p = density
<f>, (f> = total potential, perturbation potential
(o = vorticity
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Subscripts
r = reference
oo = freestream

Superscripts
L = lower surface variables
U = upper surface variables
* = substitute flow variables, scaled flow variables

I. Introduction

I NTEGRATION of propulsion systems is playing an in-
creasingly important role in designing modern aircraft. When

commercial jet aircraft were first developed, the engines were
placed a significant distance from the wing (e.g., the Boeing
707 or the B-52) so as to minimize "interference drag." Such
placement, however, imposes structural penalties, such as the
need for longer landing gear and heavier struts. Close inte-
gration places severe demands on computational fluid dynam-
ics tools. In addition to the necessity of modeling the entire
airframe as a unit, there are also interactions between the
engine exhaust and the rest of the airplane. Also, the geo-
metric and physical complexities of the problem require the
solution of large computational problems with many degrees
of freedom (DOF). In particular, engine exhausts tend to have
large areas of supersonic flow, and complex but relatively
weak expansion and compression waves and shocks requiring
high grid resolution.

The flowfield in fan jet plumes can be modeled by the full,
time-dependent Navier-Stokes equations. The difficulties in-
volved in solving these equations are enormous and the Rey-
nolds-averaged Navier-Stokes equations must be used in-
stead. The solution to these equations involves the construction
of adequate grids and the development of accurate turbulence
models. At high Reynolds numbers viscous effects are con-
fined to boundary layers on solid surfaces and shear layers
bounding the plumes. At flight Reynolds numbers it may be
possible to ignore even these viscous effects and solve the
steady-state Euler equations. For many external-flow prob-
lems the full potential approximation to the Euler equations
offers reasonable accuracy at considerably reduced expense.
However, it is generally thought that the full potential equa-
tion does not govern plume flows when there are powered
effects. The analysis contained in this article and the results
presented in Sec. VI show that this is not necessarily true.
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In any modeling situation, general geometry capability must
be balanced against the fidelity of the flow physics modeling.
The full potential equation was chosen for the TRANAIR
code1-2 because it models important nonlinear effects and is
well enough understood to allow development of a reliable
general geometry engineering tool. Also, there is only one
unknown per grid point, leading to lower storage and CPU
time than that required for solution of the Euler or Navier-
Stokes equations. On the other hand, there are limits to the
type of flowfields that can be modeled by the full potential
equation. The Euler equations, having five unknowns per grid
point in three dimensions (four per grid point in two dimen-
sions), can model volume vorticity and entropy variations.
This results in improvements in accuracy when the flow con-
tains strong shock waves or slip surfaces. The purpose of this
article is to try to explain in detail some of these tradeoffs
and to compare results from two codes. In order to facilitate
the use of extremely fine computational grids, the comparison
was made using two-dimensional axisymmetric versions of the
TRANAIR code,1 and the Euler code PARC.3

Section II describes the theoretical basis for the application
of full potential modeling to powered plumes. Section III
briefly describes the TRANAIR full potential code (which
has been extended to model powered plumes). Section IV
discusses the PARC Euler code used for code comparison.
Section V describes the test problem and Sec. VI gives the
computational results.

II. Theory Behind Potential Flow Plume Modeling
The analysis contained in this section gives the theory jus-

tifying the application of the full potential formulation to the
computation of turbofan jet plumes. In Sec. II.D. the main
concept which allows the application of standard full potential
solvers to a large class of propulsion problems is defined.

A. Euler Equations
The steady-state Euler equations in three dimensions are

five equations in five unknowns. These unknowns can be
taken to be /?, p, and the three components of the velocity
vector V. The Euler equations express conservation of mass,
momentum, and energy as follows:

V - W = 0,
V-M = 0,
V-E = 0,

W = pV
M = WVT + pi
E = HW

(1)
(2)
(3)

To complete the description, total enthalpy H is defined for
an ideal gas

(4)

where q = \\V\\2. The thermodynamic entropy 5 can be defined
for an ideal gas as follows:

(pip.) = (5)

Here *3l is the difference of the specific heat capacities. By
solving Equations (4) and (5) for p and p in terms of H\ 5,
and q, the Euler equations can be alternatively cast as five
equations for the five variables //, S and V. To better under-
stand the Euler equations in terms of these variables, Eqs.
(1-3) can be combined in the following ways:

(V-E) - H(V-W) = W-VH = 0 (6)

(q2 - H)(V-W) - V-(V-M) + (V-E) = TW-VS = 0
(7)

Here <o = V ® V is the vorticity vector and T = pl(9lp) is
the temperature. Equation (8) can be rewritten in an alter-
native way by introducing the concept of swirl, i.e.

G ^ (W-<o/p2q2) = swirl (9)

Then Eq. (8) becomes

to = GW+ (T/pq2)W ® VS - (l/pq2)W ® VH (10)

Using Eq. (1) and the fact that V-c* = 0, an equation for G
is obtained by taking the divergence of Eq. (10), i.e.

W VG = V- [(l/pq2)W ®VH - (T/pq2)W ® VS] (11)

A heuristic idea of how the Euler equations work can be
given in such a way that the approximations underlying the
use of the full potential equation will be made clear. Given
an initial estimate of V, an approximate solution to the Euler
equations can be obtained by noting that Eq. (6) is a con-
vection equation for H and states that H is constant along
streamlines. If H is specified at the head of every streamline,
then H may be found at every point in the flowfield. (Possible
discontinuities of H, 5, and V in the flowfield will be addressed
later.) From Eq. (7) it is seen that once 5 is specified at the
head of every streamline it can likewise be convected un-
changed along streamlines. Assuming G is specified at the
head of every streamline, old estimates of V and new estimates
of /?, p, and T can be used to convect G along streamlines by
means of Eq. (11). The vorticity vector <o can then be com-
puted from Eq. (10). At this point a new estimate of V can
be obtained as follows. V is decomposed into the sum of a
scalar potential O and a vector potential A:

Taking the curl of Eq. (12) gives

V2A = -<

(12)

(13)

A can now be computed using standard integral formulas. The
only remaining unknown is 4>. Equation (1) can be considered
as a second-order equation defining <f>. It can be solved by a
full potential flow solver which can handle field sources, using
boundary conditions appropriate for.potential flow.

Now consider boundary conditions on configuration sur-
faces. For an impermeable surface the only boundary con-
dition required is

n-V = 0 (14)

(V-M) - (V-W)V = -W® <*> - pTVS + pVH = 0
(8)

For a permeable surface there are two cases depending on
whether the streamlines enter or exit the surface. Assume
they exit the surface. If the local flow is supersonic then it is
known immediately that H, 5, and V must all be specified. If
the local flow is subsonic, then H, 5, and G must be specified
together with one additional boundary condition. This con-
dition should be compatible with a well-posed Neumann or
Dirichlet condition for <I>. (Note, that there are many equiv-
alent formulations of these boundary conditions. This partic-
ular choice is motivated by consideration of the potential flow
approximation in Sec. II.C.) Now assume the streamlines
enter the surface. If the local flow is supersonic it is known
immediately that no conditions may be specified. If the local
flow is subsonic then only one boundary condition may be
specified, which again must be compatible with a well-posed
boundary condition for O.

At surfaces of discontinuity in the flowfield (e.g., lateral
plume boundaries or shocks) the appropriate jump conditions
can be derived by viewing Eqs. (1-3) as flux conservation
laws. Denoting by A the jump in a quantity across a surface
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with normal n, and by a the average value of the quantity on
both sides of the surface, these conservation laws imply

Mass

Momentum

Energy

A(w-W) - 0 (15)

w - 0 (16)

- 0 (17)

Substituting Eq. (15) into Eqs. (16) and (17), and splitting
Eq. (16) into tangential and normal components, gives
Normal Momentum

a(n-W)k(n-V) + = 0

Tangential Momentum

Energy

V) - 0

= 0

(18)

(19)

(20)

There are two possibilities depending on whether or not a(n - W)
is zero.

If a(n-W) is not zero, then the discontinuity surface is a
shock surface. Conservation of mass [Eq. (15)] shows that
n- W is continuous across a shock. Conservation of energy in
the form of Eq. (20) shows that H is continuous across a
shock. Conservation of tangential momentum [Eq. (19)] shows
that the tangential components of velocity are continuous
across a shock. Conservation of normal momentum [Eq. (18)]
combined with conservation of mass [Eq. (15)] yields the
Rankine-Hugoniot relations governing the jumps in S and n - V
across a shock.

If a(n - W) = 0, then the surface is a slip surface or in viscid
wake. Wakes form the lateral boundaries of plumes. From
Eqs. (15), (18), (19), and (20), it is seen that the following
three conditions are equivalent to conservation of mass, mo-
mentum, and energy across wakes:

a(n-W) = 0
A(w-W) - 0

A(/7) = 0

(21)
(22)

(23)

Equations (21) and (22) show that slip surfaces are stream
surfaces. Note that entropy, total enthalpy, density, and all
three components of velocity may jump across a wake.

B. Role of Total Temperature in the Inviscid Analysis of
Plume Flows

It turns out to be somewhat more useful to replace H and
S by the more directly measurable, but equivalent parameters
rT and rp. The parameter rT is the ratio of the local total
temperature to the total temperature at infinity, and is related
to H by the formula

(y - H
[(y -

(24)

Here c denotes speed of sound and M denotes Mach number,
i.e.

c2 = yplp
M = qlc

(25)

Yp is related to S and H by the formula

„- (,«,*-., -*[. + ̂  «l]

where

R = exp[-(y-

(26)

(27)

p^ is the static pressure at infinity, and the ratio PT/pM is the
fan or core pressure ratio commonly used in engine perfor-
mance measurements.

Pressure and density may be expressed as functions of rr,
rp, and q by the formulas

p = (28)

p = pJ(rPlrT)Fu<y-» (29)

F = 1 + [(y - l)/2]Ml[l - (q2lrTql)} (30)

An important fact concerning inviscid plume flows is that
rT (and equivalently H ) is often an unessential variable. Here
unessential means that the streamline pattern, Mach number,
pressure and momentum (and hence forces) are totally in-
dependent of values of H specified at the head of each stream-
line. To see this, pose and solve a general boundary value
problem for the Euler Eqs. (1), (2), and (3). A substitute
flow is then defined4 with new variables /?*, p*, and V* as
follows:

V* = V(HJH)V

p* = (H/HJp (31)

It is easy to show that this substitute flow also satisfies the
Euler equations in a conservative manner,5 and moreover,
that

(32)

where

M* = (q*/c*) = M

c*2 = (W*/p*) (33)

The existence of such a substitute flow implies that it is always
possible to solve the full Euler equations by first solving the
mass and momentum equations (four equations in four un-
knowns) and then performing a postprocessing computation
to solve the energy equation. First set H* = Hx, define p*
by

- yp*i[(y - *2)] (34)

and solve Eqs. (1) and (2) for V* and p*. For this purpose
Eqs. (31) and (34) are used to transform the original boundary
conditions to boundary conditions for p* and V*. Upon so-
lution, H is defined at the head of every streamline as orig-
inally specified and its value is convected unchanged down
every streamline (even through shocks). Then V, p, and/? are
solved for by inverting Eqs. (31). This completes the proce-
dure. Now, assume the above boundary conditions for V* and
/?* on the configuration surface turn out to be independent
of H. (For example, this will be the case for impermeable
surfaces, for exits on which the swirl and tangential compo-
nents of velocity are specified as zero, and for inlets open to
the freestream flow.) Then the solution V*, p*, and p* is
entirely independent of H. By inspection of Eqs. (31-33),
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the streamline patterns, pressure and momentum (hence forces),
and Mach number are seen to be the same for V, p, and p as
for V*,p*, and/?*.

This shows that the solution is essentially independent of
the specified values of H (or rr), and that the only real result
of specifying nonfreestream total temperature is to scale the
velocity and mass flux vectors.

C. Potential Flow Approximation
Assume H equals a single constant at the head of all stream-

lines in a stream tube. Then H will be identically constant in
the tube and the flow will be isoenergetic. Similarly, assume
that 5 equals a single constant at the head of all streamlines
in the tube. In the absence of shocks S will be constant in the
tube and the flow will be isentropic. Because S always jumps
across shocks, a flowfield which is initially isentropic will not
remain so downstream. For weak shocks the entropy jump is
quite small and the flow may still be considered isentropic.

If the flow in a tube can be considered isoenergetic and
isentropic, then the right side of Eq. (11) vanishes and G is
convected unchanged along streamlines in the absence of
shocks. Assume that G is zero at the head of every streamline
in the tube. Then the flow will initially be swirl-free. G does
jump across shocks, but the jump is small for weak shocks
and actually zero for normal shocks. Assuming the flow in a
tube is isoenergetic and can be considered isentropic and swirl-
free, Eq. (10) shows that the vorticity vector vanishes. The
velocity vector can then be expressed as the gradient of a
scalar potential.

To summarize, the flow in a plume can be considered to
be potential flow if 1) variations in entropy and total enthalpy
at the exit of the propulsion device are small, 2) the propulsion
device produces a negligible amount of swirl, and 3) shocks
in the plume are weak.

Assuming the velocity field in a plume can be represented
by a potential, set

V = (35)

From Eqs. (28) and (29), p and p can be solved for as functions
of rr, rp, and q. Since rT and rp are specified constants in the
plume, the only real unknown is <I> and any one of Eqs. (1-
3) can be used as the governing flow equation. [Usually, Eq.
(1) is chosen.]

At a solid surface with normal vector n the condition

n-W = 0 (36)

is required. This is the natural Neumann boundary condition
associated with Eq. (1). At the exit of a propulsion device
(upstream boundary of a plume), specification of normal mass
flux is not well-posed when the Mach number at the exit is
subsonic. The amount of mass flow in the plume is actually
determined by the Kutta condition at the cowl trailing edge
when the flow is not choked, and is therefore dependent on
the interaction between the plume and its exterior. Thus, the
exit boundary condition must involve primarily the tangential
components of velocity. In potential flow the tangential com-
ponents must be derivable as the surface gradient of a scalar
potential. It is the usual practice to specify the actual value
of this potential rather than compatible tangential velocity
components. Otherwise, the level of potential in the plume
would be arbitrary, and therefore, the boundary value prob-
lem would be singular. If no other information is available,
the potential can be chosen to be constant, which means that
the exit flow direction must be normal to the exit surface.
The actual value of the constant is immaterial. If the exit
Mach number is supersonic, its value must be specified. This
is an additional boundary condition which can be imple-
mented in a potential flow solver by upwinding the density
at the exit to its value at the specified Mach number.

Across shock surfaces, n • W and H are assumed continuous
as in Euler flow. Thus, mass and energy are conserved. Con-
servation of tangential momentum is enforced by requiring
the potential itself to be continuous across a shock surface.
This condition is equivalent to the continuity of the tangential
components of velocity. To maintain potential flow, conser-
vation of normal momentum [Eq. (18)] is replaced by

AS = 0 (37)

This leads to a modification in the Rankine-Hugoniot rela-
tions, which is slight for weak shocks. Most potential flow
solvers capture shocks so that these relations are imposed
without the necessity of modeling shocks as boundary sur-
faces.

Full Euler solvers capture wakes in such a manner that Eqs.
(21-23) are automatically satisfied, although numerical dif-
fusion tends to smear the slip surfaces. In potential flow,
wakes must be modeled as boundary surfaces with jump
boundary conditions. Since the full potential equation is a
second-order partial differential equation, only two (or two
linear combinations) of the three Eqs. (21-23) may be im-
posed. The remaining condition must be achieved by moving
the wake. This topic will be discussed in the next section.

D. Wake Boundary Conditions in Potential Flow
The criterion for determining which two jump conditions

should be used as wake boundary conditions in potential flow
is the following. The solution of the resulting boundary value
problem should yield flow quantities on configuration surfaces
which are relatively insensitive to the assumed wake position
as long as that position is not seriously in error. Historically,
Eqs. (22) and (23) have been found to satisfy this criterion.
Equation (21) is used to determine the wake surface location.
An interpretation of this choice is that the potential flow
boundary value problem should conserve mass [Eq. (15)] and
normal momentum [Eq. (18)], and updating the wake position
should lead to conservation of tangential momentum [Eq.
(19)] and energy [(Eq. (20)]. In this regard note that the first
term on the left of Eq. (18) is negligible when the wake is
approximately a stream surface. Once the solution V, /?, and
p to the potential flow boundary value problem is obtained,
Eq. (21) becomes an equation for n, and the wake can be
repositioned by a marching procedure. However, a reposi-
tioning update is usually unnecessary for any reasonable choice
of wake location.

This insensitivity seems to be the case only when the jump
in rp across the wake is small. It is fairly easy to see why.
First, assume that the total temperature jump has been scaled
out of the problem as discussed in Sec. II.B., so that rT = 1.
Since the static pressures are the same on each side of the
wake, Eqs. (28-30) show that the magnitude of the mass flux
on the side of the wake with higher rp is greater than that on
the other side. As the difference in rp increases, Eq. (22)
tends to a solid wall boundary condition for the side of the
wake with higher rp, and hence, the solution is heavily de-
pendent on wake location. Apparently, the plume and its
exterior have become unbalanced and a scaling is required
before one can apply Eq. (22).

To find an appropriate scaling, consider Fig. 1. Here, a
portion of a wake or slip surface that separates an upper region
of total temperature ratio r^ and total pressure ratio rp from
a lower region with total temperature ratio r^ and total pres-
sure ratio rp is shown. Also shown is the estimated or ap-
proximate wake location. (For simplicity a two-dimensional
case is considered, but these arguments will easily generalize
to three dimensions by considering the x direction to be the
local stream direction.) Boundary conditions to impose on
the approximate wake will be derived by extrapolating upper
and lower flux vectors from the real wake to the approximate
wake and observing what each conservation law implies about
their jump. Let B be a conserved flux vector, e.g., W, a
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BU

Real Slip Surface Location

Estimated Slip Surface Location

Ax
Fig. 1 Schematic diagram for deriving scaling to balance plume flows.

component of M or E. In Fig. 1, only Bu needs to be extrap-
olated and it is assumed to be divergence-free in the region
between the two wake locations (but with rT = r^and rp =
rp). From Gauss's theorem

n BudS = 0

n BLdS = 0

(38)

(39)

Multiplying Eq. (38) by the constant \u and Eq. (39) by the
constant AV subtracting and scaling by Ax leads to

dS + --

\dS = 0 (40)

Here, A denotes the difference between upper and lower
values.

First consider conservation of mass and take B to be the
mass flux vector W. Then, the third integral on the left van-
ishes identically because the real wake is a stream surface. If
\u and \L are chosen to make the second integral vanish as
well, the first integral will yield a jump condition across the
approximate wake location satisfied by the real flow. The
second integral is an approximation to the expression

jd[
"djc

(41)

The estimated wake location and sldpe are assumed to be
reasonably close to the real wake location and slope, in which
case z(x) and dz(*)/djt are small, and therefore, x- W - pq.
If Xu was chosen as pLqL/puqu and \L as 1, then the expression
(41) would vanish identically. However A*7 must be constant.
If YU

T and ru
p are equal to r^ and T>, respectively, then

density and speed are continuous across the real wake and
\u will be nearly equal to 1. If the ratios are unequal then \u

will still be somewhat invariant, but different than 1. A good
choice for \u is the far-field value of the above ratio. A ref-
erence speed qr is defined in each region to be the speed at
which p = px in Eq. (28). pr is defined by substituting qr into
Eq. (29), and then choosing \u = tfq1;!pu

rqu
r. With this

choice, expression (41) is small regardless of moderate errors
in wake position and the integrand of the first integral of Eq.

(40) becomes the appropriate jump condition. Thus, Eq. (22)
is replaced by

= 0 (42)

Now, consider conservation of normal momentum and take
B to be the z momentum flux, i.e., B = W(z-V) + pt The
third integral of Eq. (40) becomes

(43)

again noting that the real wake is a stream surface. Because
Ap = 0 across the real wake, expression (43) vanishes only
when \u = XL. Making this choice, Eq. (40) becomes

(44)

(45)

The second integral approximates

-A^(2dxl

Again assuming that the approximate wake position and slope
are reasonably close to the real wake position and slope, then
z(;t), dz(jc)/djc, and z- V are all small, so that this integral may
be neglected. In the first integral of Eq. (44) both z-W and
z-V are small so that their product is negligible. Thus, the
boundary condition implying conservation of normal mo-
mentum is still Eq. (23).

In a similar manner, consideration of conservation of tan-
gential momentum and energy leads to the conclusion that
the wake updating condition should be

a[A-(W/Prqr)} = 0 (46)

The consequences of the analysis of this section are some-
what clearer if the wake boundary conditions are interpreted
in terms of a scaling. In each separate region of constant total
temperature and pressure ratios, scaled (or starred) velocity,
density, and pressure are defined as follows:

v* = (i/0v
* = (i/*)p
* = (l/RQ2)p

p* = (47)

Here Q and R are constants associated with the region. A
consistent set of associated scaled quantities are the following:

q* = c* = (l/0c

M* = M, H * = (l/<22)#, S* = S (48)

W* = (IIRQ)W, r* = (l/G2)rr, r* = (l/RQ2)rP

In order to achieve Eq. (42) as a natural boundary condition
for the scaled mass flux vector, QR = qrprlqxp^ is required.
For the purpose of simulating wakes in the far field by doublet
sheets which are constant in the freestream direction, q* ->
q^ as p* — » px is required. These two requirements imply

Q=
(49)

R =
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Note that when rp = 1, this scaling reduces to that of Sec.
II.B. Moreover, for arbitrary values of rp, the relationships
between scaled and unsealed Mach numbers, pressures, mo-
menta, and streamlines are independent of rT. For the scaled
quantities equations, Eqs. (1), (22), and (36) hold as before,
and Eq. (21) is used to update the wake. However, Eq. (23)
no longer holds for/?*. Nevertheless, this scaling does imply
that both p* and n-V* are continuous across wakes, a well-
known property of the unsealed equivalents in the case when
there is no jump in total temperature and pressure ratios
across the wake.

E. Implementation of the Static Pressure Boundary Condition
Most full potential solvers can handle a Neumann jump

condition of the form

A(W*-w) - 0

or a Dirichlet jump condition of the form

(50)

(51)

The static pressure boundary condition [Eq. (23)] is not a
Dirichlet condition, but is somewhat related. From Eqs. (23)
and (28), Q2R(ql - q*2) is found to be continuous across
wakes. Upon some manipulation, this implies that

«(V*)-A(V*) = (52)

Substituting Eq. (51) into the left side of Eq. (52) and using
the fact that n- V* is continuous across wakes, gives

a(V*)-VAt* = [b(Q2R)a(ql - q*2)]l[2a(Q2R)} (53)

Now Q2R is a function of rp only. Usually, the dependence
is fairly weak. If it is assumed that k(Q2R)/a(Q2R) is small,
then Eq. (53) can be interpreted as a convection equation for
ju,*. Also, assuming an estimate of V* from a previous iter-
ation, Eq. (53) can be integrated along corresponding wake
surface streamlines. For this purpose a Kutta condition must
be applied along the wake leading edge to determine the initial
value of jji* along each streamline. Once JJL* is obtained every-
where on the wake surface, Eqs. (50) and (51) become the
standard wake jump conditions for a full-potential solver.

III. TRANAIR Formulation and Discretization
In TRANAIR1 the boundary surfaces of objects to be mod-

eled are described using networks of piecewise flat surface
patches called panels, with curvature simulated by linearly
varying normals. This input format allows relatively simple
specification of complicated surfaces. A finite element solu-
tion is obtained on a sequence of volume grids that are gen-
erated automatically. Underlying the grid is a uniform rec-
tangular grid, called the global grid, that contains all the
boundary surfaces but is otherwise independent of them. This
global grid is used to enforce the far-field condition as well
as to apply the Prandtl-Glauert preconditioner.1 The global
grid is refined locally in a hierarchical manner, i.e, any grid
box can be refined into eight geometrically similar boxes (four
in two dimensions). This process is repeated to give a grid
with any desired local resolution. This process is controlled
in various ways, one of which is a solution adaptive proce-
dure.2 The degree of resolution required is determined by a
local error estimation procedure on each of a sequence of
intermediate grids.

The nonlinear boundary-value problem is discretized on
each grid using a finite element method. The discrete un-
knowns are the values of </> defined at the grid points, i.e.,
corners of grid boxes. The velocity is computed at centroids
of the finite elements and used to compute a density. In the
nonlinear case, the density is treated as constant in each region

so that it can be factored out of the element stiffness matrix.
Elements cut by boundaries have special element stiffness
matrices as well as special formulas for computing velocities
at centroids of regions. The finite element integrals are com-
puted on the portion of the grid box cut off by the boundary
surface.

In regions of supercritical flow, artificial dissipation must
be introduced to rule out expansion shocks. Up winding the
density using adjacent element values produces a first-order
up winding where p is replaced by p, defined by

p = p - (54)

where V is the normalized local velocity, D_p is an upwind
undivided difference, and here vl is a switching function used
to turn on upwinding in supersonic zones. It has been ob-
served that more grid resolution seems to be required in super-
sonic zones by this method than in subsonic zones. This ob-
servation has led to the implementation of a second-order
upwinding where p is replaced by p, defined by

p = p + v2V-D..p (55)

When modeling powered plumes, it was shown in Sec. II
that the choice of Eqs. (23) and (42) gives a full potential
solution that is relatively insensitive to small changes in the
wake position. Equation (46) is enforced by allowing the wake
position to change. In principle, it is possible to solve this
complete nonlinear system.6 However, difficulties arise in
keeping the resulting wake surfaces coherent and with regard
to convergence. In TRANAIR, a feature is available that lofts
the wake surface in the normal direction at the end of a run.
The amount of movement is proportional to the local value
of/i-aW*.

In TRANAIR the wake surface is paneled and discretized
with values of JJL* defined at panel corner points. Values of
jn* and its gradient at any location on the wake are computed
using a suitable interpolation procedure. Equation (53) holds
at panel edge midpoints using values of V* calculated from
the local basis functions for 4>*. This arrangement assumes
that the local flow direction is roughly parallel to panel col-
umns. If there is substantial crossflow, implementation of Eq.
(53) can lead to difficulties and therefore is replaced by

- q*2)]/[2a(Q2R)] (56)

Such direction limiting is overly severe and is currently
being investigated.

At each leading-edge panel corner point of a wake a Kutta
condition is applied. This condition takes the form

- A<E>*] - 0 (57)

Here i is a unit tangent vector lying along the correspond-
ing panel column edge, and £ is a small parameter which is
chosen to be approximately equal to the local field mesh size
in the i direction. This equation guarantees that ju* is the
jump in the basis function potential O* in the case where
wake panels are denser than the field grid. The derivative
term is added to take care of the possibility that the previous
condition is redundant with respect to the boundary condition
Eq. (51). In this case, Eq. (57) ensures that the jump in basis
function velocity is well-defined and finite.

The nonlinear equations for cf> and /A* are solved using a
preconditioned inexact Newton method.1 The TRANAIR
formulation described here has been implemented for prob-
lems in both two- and three-space dimensions. An option in
the two-dimensional code allows the calculation of axisym-
metric flows.
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IV. Euler Formulation
For this article, the solution to the Euler equations is cal-

culated numerically using the PARC2D computer program,3

which is based on another program, ARC2D.7 A body-fitted,
structured grid is used to discretize the flowfield. The discre-
tization of the Euler equations is conservative and second-
order accurate. Artificial dissipation is added to ensure a sta-
ble algorithm and to prevent overshoots at shock waves. The
artificial dissipation is a combination of second-order and fourth-
order differences.8 The effect of the second-order dissipation
is to spread a discontinuity into a smooth wave spanning four
or five grid points. As the grid spacing is reduced this smooth
wave approaches the discontinuous solution to the Euler
equations. So the spatial discretization used by PARC2D is
consistent—the numerical solution approaches the exact so-
lution as the grid spacing is reduced. PARC2D uses an ap-
proximate factorization iterative, implicit algorithm to find
the solution to the steady Euler equations.9

Four types of boundary conditions are used by PARC for
problems solved in this article. For grid points on solid sur-
faces the velocity is specified to be tangent to the surface,
while the pressure, density, and Mach number are extrapo-
lated from the nearest interior point. On the upstream bound-
aries a subsonic inflow boundary condition is used. The total
pressure and total temperature are specified, and the velocity
is set to be normal to the grid line on which the boundary
condition is set. For the problems solved in this article the
inflow velocity is axial, i.e., it has no radial component. Also,
the total pressure and total temperature are specified to be
constant on the inflow boundary within each stream, although
different values are used for each of the three upstream
boundaries. The subsonic inflow boundary condition treat-
ment is completed by extrapolating from the nearest interior
point the characteristic-like quantity

UN - Pl(pc) (58)

where UN is the velocity normal to the grid line and P is the
static pressure.

At the outflow boundary, 20 nacelle radii downstream of
the trailing edge of the plug, the type of boundary condition
applied depends on the Mach number of the nearest interior
point. If this Mach number is greater than 1.0, all flow quan-
tities on the boundary point are extrapolated from the interior
point. If the Mach number is less than 1.0, the static pressure
on the boundary point is specified, while the density and two
velocity components are extrapolated from the interior point.
The outermost grid line is a line of constant radius, 17 nacelle
radii from the axis. The solid wall boundary condition is ap-
plied along this grid line. The axis of symmetry is excluded
from the domain by extending the plug along a line of constant
radius which is 0.03 nacelle radii from the axis.

V. Test Cases
The turbofan nozzle chosen as a test case is one for which

there is data from a static test designed to validate axisym-
metric CFD codes.10 The use of an axisymmetric test case
allows the use of extremely dense computational grids, even
though both computer codes used here are capable of fully
three-dimensional calculations.

For the PARC runs, the model was truncated upstream as
shown in Fig. 2a and an upstream boundary condition was
applied. The geometry used for the TRANAIR runs is shown
in Fig. 2b.

Given the geometry of the nozzle, five parameters are needed
to specify the boundary conditions for the solution of the
Euler equations. These are the external Mach number, the
fan pressure ratio, PTplp^ the primary pressure ratio, PTpl
p^ and the ratio of the total temperature in each stream to
the exterior static temperature. For the potential flow solu-
tion, the location of the wakes must also be specified. As

a) PARC geometry

b) TRANAIR geometry

Fig. 2 Geometry used for PARC and TRANAIR.

Table 1 Flow conditions for two test cases

Case Mach Fan PT/px Exhaust PT/px

1
2

0.83
0.10

2.808
2.808

2.163
2.163

shown in Sec. II, the Mach number and pressure fields are
independent of the temperature ratios, so these ratios were
chosen to be 1.0 for all computations. The values for the
pressure ratios were chosen to match specific conditions from
the static nozzle test. A high pressure ratio was chosen to
compare the computed predictions of the system of expan-
sions and compressions that occur in these nozzle flows and
is typical of conditions at which turbofans operate. Two ex-
terior Mach numbers were chosen: 1) Mx — 0.1 to simulate
the static test and 2) Mx = 0.83 to reflect the cruise Mach
number of a transonic transport. Table 1 summarizes the
boundary conditions for the two test cases. Further flow con-
ditions were analyzed and results can be found in Ref. 11.

VI. Computational Results
To control the discretization errors the calculations were

performed on a sequence of increasingly finer grids. Tables
2 and 3 summarize the grids used for the two codes. Not all
grids were run in both cases. The densest of these grids were
only used to check that the solution was essentially grid con-
verged, i.e., that the solution would not change appreciably
with further grid refinement. Full details of solutions on the
sequences of grids can be found in Ref. 11. For the TRANAIR
results, solution adaptive gridding was used, resulting in slight
differences in the grids from case to case. However, the adap-
tive gridding strategy was chosen to obtain essentially uniform
grid refinement in the fan stream.

A further source of discretization error in the TRANAIR
results occurs if the wakes are not stream surfaces. To reduce
this source of error, solutions were first obtained with wakes
generated to maintain a constant cross-sectional area in the
plumes as shown in Fig. 2. The plume lofting feature in
TRANAIR then yielded a new wake position for which the
code was run a second time. In both cases, the flow through
the wake surface, representing the error in the assumed wake
position, was reduced to the level of truncation error in the
second run. The results shown here used grids fine enough
so that further refinement caused no significant changes in
the solution.

A. Case 1 Results
Case 1 reflects commercial transport cruise conditions.

Sample grids are shown in Fig. 3 (PARC grid P2) and Fig. 4
(TRANAIR grid T3). Finer grids were too dense to be mean-
ingfully pictured here. For the TRANAIR results with sec-
ond-order upwinding, grids T1-T5 were used, for first-order
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Table 2 TRANAIR grids used for axisymmetric calculations

Grid
Tl
T2
T3
T4
T5
T6

Fan stream grid (approx.)
(axial x radial)

50 x 5
100 x 10
200 x 20
400 x 40
800 x 80

1600 x 160

Total grid cells
2,000
5,000

17,000
65,000

270,000
600,000

Table 3 PARC grids used for axisymmetric calculations

Grid
Fan stream grid
(axial x radial) Total grid cells

PI
P2
P3
P4

64 x 16
128 x 32
256 x 64
512 x 128

7,300
28,400

112,100
223,600

Fig. 3 Medium PARC axisymmetric grid P2, closeup view.

up winding, grid T6 was also used. Grids T5 and P3 have
approximately the same radial grid density. Figure 5 shows
contour plots of the Mach number from the PARC solution
on the P3 grid and from the TRANAIR solution using second-
order upwinding on the T5 grid. The contours are at a spacing
of AM = 0.05. These contour plots show good agreement.

Figure 6 compares static pressures on the core cowl. In the
configuration geometry shown in Fig. 6 the core cowl is shown
with a dashed line. The solutions shown are the TRANAIR
solution on the T6 grid with first-order upwinding, the TRAN-
AIR solution on the T5 grid with second-order upwinding,
and the PARC solution on the P3 grid.

In order to show the effect of wake position on the TRAN-
AIR results, the lofted and unlofted wake positions and the
resulting static pressures on the core cowl using second-order
upwinding on grid T5 are compared in Fig. 7.

B. Case 2 Results
In case 2 the low freestream Mach number of 0.1 eliminates

the suppression of the nozzle evident in case 1. This means
that the pressure at the exit of the fan nozzle is lower, resulting
in a larger number of compression and expansion waves. Fig-
ure 8 shows contour plots of the Mach number on the P4
PARC grid and the T4 TRANAIR grid using second-order
upwinding. Again, the contours are at a spacing of AM =
0.05. The agreement is quite good.

Figure 9 compares computed static pressures on the core
cowl. The solutions shown are the TRANAIR solution on the
T4 grid with second-order upwinding, the TRANAIR solution

Fig. 4 TRANAIR grid T3 for case 1, closeup view, Mx = 0.83, fan
PT/px = 2.808.

PARC Solution

TRANAIR Solution

Fig. 5 Mach number contours for PARC solution on grid P3 and
TRANAIR solution on grid T5 for case 1, Mx - 0.83, fan PT/px =
2.808.
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Fig. 6 Static pressure on the core cowl. PARC vs TRANAIR with
first-order upwinding vs TRANAIR with second-order upwinding for
case 1, Mx = 0.83, fan PT/px = 2.808.
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Fig. 7 Static pressure on the core cowl. TRANAIR with equal area
plumes and lofted wakes with second-order upwinding on grid T5 for
case 1, Mx = 0.83, and fan PT/px = 2.808.

Fig. 8 Mach number contours for P4 grid PARC solution and for
T4 grid TRANAIR solution using second-order upwinding for case 2,
Mx = 0.1, fan PT/px = 2.808.

on the T6 grid using first-order upwinding, and the PARC
solution on the P4 grid. The static test data10 are also shown.
The PARC solution evidently falls between the TRANAIR
first- and second-order upwinding results. The code results
are in close agreement, but the codes and test data show
differences in the amplitudes of pressure peaks and valleys
and a phase shift. Viscous effects are probably significant in
this case. Results reported elsewhere12 indicate that viscous
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Fig. 9 Static pressure on the core cowl. PARC vs TRANAIR with
first-order upwinding vs TRANAIR with second-order upwinding for
case 2, Mx = 0.1, fan PTlp» = 2.808.
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Fig. 10 Static pressure on the core cowl. TRANAIR with equal area
plumes and lofted wakes using second-order upwinding on the T4 grid
for case 2, Mx = 0.1, and fan PT/px = 2.808.
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effects provide a mechanism capable of causing these differ-
ences and it is expected that the inclusion of viscous effects
will reduce the discrepancies. Further studies are underway
that include viscous modeling which in the case of TRANAIR
involves solution of boundary-layer and shear-layer equa-
tions. A note of caution must be added though, as for some
cases the solution in a supersonic jet plume can be very sen-
sitive to the choice of turbulence model. Another factor may
be the 1% variation in total pressure across the fan stream in
the test.

As for case 1, the TRANAIR solutions were obtained with
wakes generated to maintain a constant cross-sectional area
in the plumes and with lofted plumes. The wake positions
and the resulting static pressures on the core cowl are com-
pared in Fig. 10. The shift in position of the waves is more
noticeable than in case 1.

VII. Conclusions
Two formulations and codes for modeling engine exhausts

have been compared. For some problems of interest, it has
been shown that an appropriate full potential model can pro-
vide results that are quite close to those obtained with Euler
equations modeling. Further investigation of the differences
between the code results and the static test data needs to be
undertaken.
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